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Abstract Dispersal is a critical biological process

that contributes to the persistence of species in

complex and dynamic landscapes. However, little is

known about the ability of different types of data to

reveal how species interact with landscape patterns

during dispersal. Further, application of process-

based, landscape-scale models able to capture the

influence of land use and climate change are limited by

this lack of dispersal knowledge. Here we highlight a

method for building such models when dispersal

parameters are unknown, but information on the

mating system and survival are available. We applied

a common statistical framework, rooted in information

theory, to contrast the ability of abundance, move-

ment, and genetic data to estimate dispersal parame-

ters for endangered Red-cockaded woodpecker

(RCW), using an individual-based, spatially-explicit

population model. Dispersal was modeled as a mul-

tifaceted process in which foray distance, long-

distance dispersal, competition for mates, and land-

scape permeability were treated as uncertain. We

found that movement data are three-times more

powerful than abundance data collected at the same

spatial and temporal scales. However, habitat occu-

pancy data collected over much a shorter time scale

but at regional spatial scales were very effective for

estimating dispersal. We also found that one-year of

abundance data provided a similar reduction in

uncertainty as genetic differences among breeding

groups estimated using a 24-year pedigree. Substitut-

ing population genetic data for movement and abun-

dance data often led to the same parameter values, but

not always. Our study highlights important differences

in the information content of data commonly collected

in the field.Electronic supplementary material The online version of
this article (doi:10.1007/s10980-014-0011-5) contains supple-
mentary material, which is available to authorized users.
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Introduction

Dispersal is a critical biological process that facilitates

the exploitation of new habitats, mating opportunities,

and the exchange of genetic characters that may

contribute to increased fitness (Clobert et al. 2001).

Recent work has shed light on the many different

interpretations of dispersal (Nathan et al. 2008, Lowe

and Allendorf 2010). Dispersal is often inferred by

analyzing patterns of abundance (Palmer et al. 2000),

movement (Revilla et al. 2004), and genetic variation

at broad geographic extents (Cushman and Lewis

2010). While inferring processes from observed

patterns is common to all scientific disciplines, in

ecology an erroneous description of the process, as

multiple processes can lead to the same pattern

(Grimm et al. 2005), could lead to misinformed

conservation decisions.

Even if perfect data on dispersal could be obtained,

they should be treated as case specific because

dispersal is an inherently stochastic process (Nathan

2003). However, estimating the level of uncertainty

that appropriately describes dispersal is difficult.

Further, gaining an understanding of the consequences

of using different data types to estimate this uncer-

tainty is critical. Given the complexity of dispersal

processes, it is reasonable to assume that data sources

will differ in their ability to predict different compo-

nents of dispersal. The contribution different data

types make to understanding dispersal is largely

unknown, because sites with multiple data sources

are rare (Watts et al. 2007; Lowe and Allendorf 2010).

Direct monitoring of dispersal through mark-recapture

techniques or radio telemetry is common, but may be

subject to bias due to small sample sizes (Finnegan

et al. 2011) or limited spatial extent of study areas

(Cooper et al. 2008). Population genetic techniques

are often promoted as a more cost-effective approach

for sampling large areas. The ability of population

genetic data to provide indirect evidence of dispersal

has long been debated (Nei 1986; Rousset 1997;

Whitlock and McCauley 1999; Watts et al. 2007). In a

few recent cases, dispersal was characterized using

both radio telemetry and genetic data collected in the

field, but these studies applied divergent statistical

techniques suited to each data type (Cushman and

Lewis 2010; Finnegan et al. 2011; Reding et al. 2013).

Therefore, direct comparison of the ability of data

types to estimate dispersal could not be made.

The nascent field of landscape genetics provides

statistical tools to estimate the influence of landscape

factors on dispersal from genetic characters (Sork and

Waits 2010). These tools can be broadly classified as

direct and indirect methods. Direct methods are useful

for detecting recent dispersal events and use genotypes

to assign individuals to likely regions of origin

(Scribner et al. 2005). Indirect methods use differ-

ences in allele frequencies to estimate dispersal among

population units (e.g., Fst, Wright 1951; Dst, Nei

1973; Bray-Curtis percent dissimilarity, Cushman

et al. 2006). Statistical estimates of differences in

allele frequencies are affected by both the processes of

genetic drift and gene flow, which may be occurring

heterogeneously across the landscape (Bruggeman

et al. 2010). However, indirect methods require an

assumption of migration-drift equilibrium (MDE)

(Cushman et al. 2006; McRae 2006), in which rates

of genetic drift are negligible or homogeneous over

space such that genetic differences among population

units reflect rates of dispersal. However, no method is

available to estimate the strength of MDE without

making specific assumptions regarding modes of

dispersal (Rousset 1997; Hutchison and Templeton

1999).

Individual-based, and spatially-explicit population

models (IB-SEPMs) provide a valuable tool for

developing (Bruggeman et al. 2010) and evaluating

(Lloyd et al. 2013) statistical methods in landscape

genetics (Epperson et al. 2010). Most studies demon-

strate how differences in allele frequencies among

units in hypothetical populations arise from landscape

features that impede movement over evolutionary

time scales (Landguth et al. 2010; Jaquiéry et al. 2011;

Lloyd et al. 2013). However, Cushman and Landguth

(2010) developed an IB-SEPM of black bears that

included empirical estimates of the permeability of

landscape patterns to movement and concluded that

genetic data, when analyzed with partial Mantel tests,

have high power for identifying the correct dispersal

model. In contrast, both Jaquiéry et al. (2011) and

Lloyd et al. (2013) concluded that genetic data provide
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weak signals of the influence landscape patterns have

on dispersal.

IB-SEPMs are very flexible tools that can best

contribute to the development of ecological theory by

forcing expectations of the models to confront data from

real systems (Grimm et al. 2005). We adopt this

approach in inverse modeling here and contrast the

ability of alternative dispersal assumptions included in

an IB-SEPM to replicate demographic, movement, and

genetic data collected in the field. We use an IB-SEPM

for the Federally endangered Red-cockaded wood-

pecker (RCW) (Letcher et al. 1998; Supplemental

material, SM), allowing us to incorporate both a realistic

mating system and movement mechanisms of actual

species. If simulation studies ignore some dispersal

mechanisms, then the patterns generated by these

mechanisms will not be correctly identified (Nathan

et al. 2008). Therefore, in addition to estimates of

landscape permeability (Spear et al. 2010), we also

allowed other dispersal mechanisms to vary, such as

forays, long-distance movement (Kesler et al. 2010),

and landscape influences on breeding opportunities. IB-

SEPMs include both spatial and temporal heterogeneity,

so no assumptions regarding MDE need to be made.

Here we demonstrate how dispersal parameters can be

estimated using traditional genetic statistics within an

IB-SEPM but without assuming MDE. By doing so, we

provide an explicit example of how patterns of drift can

prevent inference of dispersal parameters.

Data describing movement (i.e., a connectivity

matrix), abundance (i.e., habitat occupancy), and

24-year pedigree were collected from coastal North

Carolina, USA (Fig. 1; SM ODD). Pedigree analysis

was used to estimate Nei’s minimum pairwise genetic

distance among breeding groups (Dij; Nei 1973) and

number of unique alleles within breeding groups (Ai)

using a gene drop. Dij and Ai are commonly used

genetic statistics and may differ in sensitivity to gene

flow and genetic drift (Keyghobadi 2007). Because no

tissues could be obtained for genetic analysis, results

from the gene drop through the 24-year pedigree were

used as ‘‘observed data’’.

To pursue our objective of contrasting the infor-

mation content of different data types, we developed a

common statistical framework. We estimated -log

likelihood functions (-log[L{S|O}]) to quantify the

deviation between the observed data (O) and the data

generated by each dispersal parameterization (S). Each

dispersal parameterization was generated for inverse

modeling by taking a systematic sample of the entire

uncertain parameter space for each uncertain dispersal

parameter applied to the IB-SEPM. We then estimated

for each dispersal parameterization the resulting -log

likelihood values of the different data types and

determined the parameterizations that best approxi-

mated one or more types of observed data (Wiegand

et al. 2004; Martinez et al. 2011; Hartig et al. 2011).

This approach allowed us to learn how the uncertainty

in each dispersal parameter is reduced when consid-

ering the information provided by the different types

of observed data in our inverse approach.

To contrast information content of data types, we

structured data analysis in three phases. The objective of

the first phase was to identify the best attributes of

genetic loci to include in the analysis by performing

spatial autocorrelation analysis. The objective of the

second phase was to perform a preliminary evaluation of

information content among estimates of model fit (i.e.,

-log[L{S|O}]-values) for movement, demographic,

and genetic data using Spearman rank correlation. The

objective of the third phase was to contrast the

information content of data collected at different levels

of biological complexity and spatial extent by testing

five hypotheses (Table 3). Because multiple processes

can produce the same patterns, -log[L{S|O}]-values

from multiple data types were included in hypothesis

tests to remove parameterizations not able to closely

approximate observed data. The hypotheses were tested

by comparing the number of accepted parameterizations

and the range of parameter values that result when

different -log[L{S|O}]-values were used to reduce the

state space of parameters. For example, we test whether

movement and abundance data collected over the same

time period are equally useful for estimating dispersal

parameters (Table 3). This hypothesis is tested by

comparing the number of parameterizations accepted by

filters A and B (Table 3).

Methods

Spatial autocorrelation analysis

A six-generation pedigree, rather than tissue samples,

was used to derive genetic indices. While empirical

genetic data reflecting the accumulated influence of

natural history traits and landscape patterns over

evolutionary time scales would be ideal, by using a
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pedigree to estimate genetic indices we were able to

reduce the influence of historical dispersal and demo-

graphic events that would be reflected in empirical

genetic data and cloud signatures of recent movements

(Watts et al. 2007). Further, recent studies suggest that

genetic differences due to landscape effects on

dispersal may arise in as few as five generations

(Cushman and Landguth 2010).

IB-SEPMs have recently been used to demonstrate

that the more loci and greater number of alleles per

locus increases the power of genetic analysis to detect

the correct dispersal process over evolutionary time

scales (Landguth et al. 2012). However, our study

focuses on comparing the ability of data collected over

ecological time scales, including demographic and

movement data, to infer dispersal, and we are uncertain

how many loci and how many alleles per loci should be

included in the pedigree analysis. Past studies (Cush-

man and Landguth 2010; Landguth et al. 2012) have

estimated statistical power based on the number of

iterations of an IB-SEPM that report results in agree-

ment with the underlying dispersal process coded into

the simulation. In contrast, here, we estimate genetic

summary statistics (Dij and Ai) within the simulation,

and can report them per iteration or average them

across iterations of a Monte Carlo simulation. When

running simulations over shorter time-scales, we

demonstrate how we can increase power of the analysis

through the number of iterations included when

averaging summary statistics.

To determine the sufficient number of loci and

number of alleles that will allow us to detect the

influence of spatial structure on movement when using a

six-generation pedigree, we applied spatial

Fig. 1 Red-cockaded woodpecker territories in 2009 in Coastal

North Carolina. Holly Shelter State Game Lands (HS, purple),

Camp Lejeune (CL, red), and Croatan National Forest (CNF,

green). Forested areas are light gray, non-forested gaps are dark

gray, and water is white
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autocorrelation analysis. We simulated 21 loci across a

range of allelic richness. Locus 1 assumed an Infinite

Alleles Model (IAM) of genetic variation—two unique

alleles for each founder at the start of the simulation [i.e.,

total alleles = 2 9 number of founders (SM ODD)].

Across the remaining 20 loci, four-levels of allelic

richness were simulated to occur, each at five loci. The

levels of allelic richness were set to provide five to two

alleles/locus to emulate allelic richness observed at

microsatellite loci for the species (Fike et al. 2009). This

was achieved by sampling alleles from a normal

distribution with standard deviations including 1, 0.5,

0.25, and 0.05. So, each of the four-levels of allelic

richness were simulated to occur at five loci.

To avoid confounding correlations among alleles

within a locus (Epperson 2004), Moran’s I was

calculated based on the frequency of the most common

allele in a breeding group at each locus. Allele

frequency data were estimated by a gene drop through

a pedigree 1-, 200-, and 10,000-times from 1986 to

2009. The gene drop simulates the transmission of

alleles from parents to offspring assuming Mendelian

inheritance (i.e., their offspring had an equal proba-

bility of inheriting each of the two alleles). For loci

simulating observed levels of allelic richness at

microsatellite loci, we also averaged the frequency

of the most common allele across the five independent

loci that had the same level of allelic richness. Moran’s

I was calculated using Passage (Rosenberg and

Anderson 2008) using 10 distance classes and a binary

connection matrix.

IB-SEPM

Details of the RCW IB-SEPM can be found in SM

following the Overview, Design concepts, and Details

(ODD) protocol (SM ODD), which is intended to

provide a standard approach for describing agent-

based models across studies to increase transparency

(Grimm et al. 2010). Briefly, the IB-SEPM was

constructed based on a 24-year banding program for

RCWs at Marine Corps Base Camp Lejeune (CL;

Fig. 1). The RCW IB-SEPM simulates the cooperative

breeding system of RCWs. Breeding groups consist of

male and female breeders, fledglings, and, helpers who

are usually male and full or half-sibs to the fledglings

(Walters et al. 1988). Male helpers play a critical role

in population dynamics by participating in the defense

of the territories, feeding of nestlings, and inheriting

their natal territory upon the death of the male breeder.

Male helpers will preferentially inherit their natal

territory upon the death of the breeding male, out-

competing floaters and helpers in adjacent territories.

In contrast, we are more uncertain of the role female

helpers play, but review of bird banding data indicate

they do not inherit their mother‘s role as a breeder in

their natal territory—so this was excluded from the

model. Floaters of both sexes are also present in the

region, which move continuously seeking a breeding

vacancy in a territory (Walters et al. 1988).

The dispersal kernel was based on observations

from another site so we allowed these parameters to

vary (SM ODD). Alternative dispersal models were

assembled by identifying ranges for seven parameter

values used to simulate dispersal based on previous

studies and expert opinion (Table 1). Thus, we did not

need to implement different dispersal models to

represent alternative hypotheses, but they were cov-

ered exclusively by the parameterization of our

general dispersal model. Values from these ranges

were sampled randomly with replacement using a

Latin hypercube until 600,000 parameterizations were

assembled. A systematic sample of the parameter

space was required here because our aim was to

compare the ability of different summary statistics to

provide information regarding dispersal.

The population was simulated over an eight county

area in coastal North Carolina covering an approxi-

mately one million hectare area, commonly referred to

as the Onslow Bight Landscape (Fig. 1). Landscape

classification in the Onslow Bight was performed by

Dr. Aaron Moody’s lab at University of North

Carolina. FEMA Lidar data collected in 2001 and

the National Land Cover Database were used to

Table 1 Model parameters estimated by inverse modeling for

male and female individuals and their initial ranges

Parameter Range

Foray distance of helpers 1–60 [cells]

Foray distance of floaters 1–60 [cells]

Seasonal dispersal speed 1–20 [cells]

Strength of terrestrial gap avoidance 0 to -0.005

Strength of water gap avoidance 0 to -0.005

Sensitivity to terrestrial gaps during competition 0 or 1

Sensitivity to water gaps during competition 0 or 1

Cell size = 1 ha, so 60 cells = 6 km. See SM ODD for

parameter definitions
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identify four cover types including forested, open,

water, and wetlands (SM ODD).

Observed data

Two sites that implemented independent monitoring

programs provided data (Fig. 1). CL has maintained a

bird-banding program since 1986 that provides a

complete census and determination of reproductive

success for the entire population each year (Walters

et al. 1988). Holly Shelter State Game Lands (HS)

monitors nesting success each year, but to include data

comparable to CL we supplemented their efforts for

one year to generate a spatially-explicit pattern of

abundance. Therefore, the data set provides patterns

that differed markedly in spatial and temporal scale

and level of biological detail (Table 2).

Estimating model fit

We reduced the raw observed data into ‘‘summary

statistics’’ that capture different aspects of the observed

population dynamics (Martinez et al. 2011, Wiegand

et al. 2004; Table 2). We then estimated the same

summary statistics from the simulation by calculating

the mean of multiple simulated runs to eliminate the

internal model stochasticity, thereby treating the sto-

chastic simulation model as deterministic on the level of

the simulated summary statistics (Martinez et al. 2011).

We estimate likelihood functions L[S|O] to describe the

deviation between the summary statistics of observed

data (O) and data generated by each dispersal param-

eterization (S) (Csillery et al. 2010; Wood 2010).

Summary statistics generated by the IB-SEPM were

collected in Spring (SM ODD) for the same time

intervals and territories present in the observed patterns

(Table 2). Averages for all simulated data were taken

across the 200 Monte Carlo iterations for each dispersal

parameterization. For count data, including the number

of Potential Breeding Groups (PBGs), group size, and

connectivity, we assumed a Poisson error distribution.

For example, the negative log likelihood (-log[L]) for

group size on CL was estimated as:

� logðfSjOgÞ ¼
X2009

t¼1997

X106

i¼1

� log
SOti

ti e�Sti

Oti!

� �

where t = year and i = territory. The temporal and

spatial extent of data included in the -log[L] estimates

for connectivity, PBGs, and group size at other sites

varied as described in Table 2.

For genetic data, in which the observed data were

generated by a gene drop iterated 10,000 times, a

Gaussian distribution was used.

� logðLflSjlO; rOgÞ ¼
X106
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where lS equals the average Dij across 200 Monte

Carlo iterations and lO and rO equal the mean and

standard deviation for Dij from the 10,000 iterations of

the observed gene drop. The same approach was

applied to number of unique alleles per breeding group

on CL, except it was summed across the vector

describing unique alleles per territory rather than a

territory by territory matrix. Both the observed and

simulated genetic summary statistics assume that

founders are unrelated, which removes any potential

bias that would result from potential levels of relat-

edness among founders.

Table 2 Description of observed summary statistics available

from each landowner and their associated temporal and spatial

scale

Observed pattern (abbreviation) Camp

Lejeune (CL)

Holly

Shelter (HS)

Number of Potential

Breeding Groups (PBG)

1997–2009 NA

Group Size (Group) 1997–2009

Territories

1–106

2009

Territories

1–34

Connectivity (Conn)a 1997–2009

Territories

1–106

NA

Minimum pair wise

genetic distance (Dij)b
1986–2009

Territories

1–106

NA

Unique Alleles per

breeding group—(Ai)

1986–2009

Territories

1–106

NA

NA not available
a Connectivity is summarized as a symmetrical matrix in

which the values represent the number of birds born in territory

‘‘i’’ who became breeders in territory ‘‘j’’, summed over

13 years of field work (SM)
b Nei (1973)
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The goal is then to find parameterizations that

minimize the deviation between the summary statis-

tics of the observed and simulated patterns.

Hypothesis testing

In order to test the five hypotheses designed to contrast

the information content of different summary statis-

tics, we constrained the parameter state space, from

the initial 600,000 dispersal parameterizations tested,

by applying rejection ‘‘filters’’. By applying rejection

filters, we require simulated dispersal parameters to

closely approximate the observed summary statistics,

as estimated by their associated -log[L]-values. By

including one or more summary statistics into a filter

(Table 3), it provides a method for contrasting the

ability of observed data to estimate dispersal param-

eters. For example, to contrast the ability of movement

versus abundance data to estimate dispersal, param-

eters that results from applying filters A (i.e., requiring

parameterizations to closely approximate the observed

connectivity matrix on CL) versus B (i.e., requiring

parameterizations to closely approximate the observed

abundance data on CL) are compared (Table 3). To

contrast the value of adding 1 year of abundance data

from HS versus 13 years of abundance data from CL,

filters B versus C are compared; etc.

Filters were applied in two ways. First, to contrast

the power of summary statistics, we filtered parame-

terizations by selecting only those with -log[L]-

values within the 0.05 percentile. Summary statistics

that accept many parameterizations show low infor-

mation content (i.e., weak patterns; Wiegand et al.

2003) because they are only able to weakly constrain

the dispersal parameter space. In contrast, summary

statistics that reject many parameterizations show high

information content (Wiegand et al. 2003). When

more than one summary statistic is included within a

rejection filter it may be harder to find parameteriza-

tions able to satisfy the 0.05 percentile for multiple

summary statistics and the parameter space will be

further reduced. The hypotheses were tested by

comparing the number of accepted parameterizations

that result when different restriction filters were

applied. Second, we contrast differences in parameter

values that result when different summary statistics

are applied. This was performed by adjusting the

Table 3 Hypotheses tested using inverse modeling

Hypotheses Filters compared Result

H1 M vs. D: movement and demographic

data collected over the same time period

are equally useful for estimating dispersal parameters

A CL Conn

(1,861)

vs. B CL Group

CL PBG

(5,995)

Reject

H2 D long vs. D short: the temporal and spatial

scale of demographic data does not affect

estimates of dispersal parameters

B vs. C HS Group

(29,987)

Reject

H3 rD: short-term demographic data at a regional

scale does not improve estimates of dispersal parameters

D CL Group

CL PBG

CL Conn

(119)

vs. E HS Group

CL Group

CL PBG

CL Conn

(1)

Reject

H4 Dij vs. D,M: substituting genetic distance for

movement and demographic patterns does not lead

to same dispersal parameters

E vs. F CL Dij

(30,005)

Accept

H5 Dij, Ai vs. D,M: adding unique alleles to genetic

distance does not improve dispersal estimates

G CL Dij

CL A

(13,892)

vs. E, F Reject

Hypotheses are tested by comparing the number of parameters accepted when different summary statistics are included in rejection

filters at the 0.05 percentile (reported under the definition for each filter). For example, rejection filter C includes only summary

statistic from HS describing group size (HS Group)
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percentiles applied to the -log[L]-distributions for

each filter (Table 4) to accept the ten best

parameterizations.

Spearman rank correlations

First we estimated relationships among estimates of

model fit -log[L]-values) for all summary statistics.

Correlations among estimates of model fit were

calculated across the 600,000 dispersal parameteriza-

tions tested. Positive correlations tell us that estimates

of model fit point to the same dispersal parameteriza-

tions and that there are no severe trade-offs which

would point to errors in the process structure of the

model. However, high correlations among estimates of

model fit do not mean that different statistics are

completely redundant; though they point to the same

parameterizations/processes, they might differ in their

ability to characterize uncertainty.

Next we examined the relationship between process

uncertainty and the model’s ability to approximate

observations from the field. Therefore, we examined

the relationship between parameter values and esti-

mates of model fit for all 600,000 parameterizations. If

the estimates of model fit and parameter value are not

correlated then the parameter value has little influence

on the ability of the model to approximate the

observed pattern characterized by the summary sta-

tistic. Then we developed seven filters that remove

parameterizations not able to closely approximate one

or more patterns (Table 3). The filters were used to

select the 200 parameterizations reporting the smallest

negative log-likelihood values for one or more

patterns. The correlation between parameter values

and estimates of model fit may change across the

application of different filters if the summary statistics

differ in their ability to fit different aspects of

dispersal.

Results

Spatial autocorrelation analysis

When only one iteration of the Infinite Alleles Model

(IAM) locus was used no spatial autocorrelation was

detected (Table SM1). However, spatial autocorrela-

tion resulted when 200 and 10,000 iterations were

used. The Moran’s I coefficients were very similar

across these two treatments. The positive spatial

autocorrelations were observed at distances[2.5 and

B5.8 km, which corresponds to median distances of

forays by juvenile females at another site (Kesler et al.

2010). At lag distances [12.9 km, negative autocor-

relations were observed, indicating that allele fre-

quencies were less similar than would be expected if

they were randomly distributed—indicative of isola-

tion by distance.

However, when locus 2 was evaluated no spatial

autocorrelation was detected using 200 or 10,000

iterations. This is not surprising. We are sampling

alleles from a normal distribution and then simulating

mating over 6 generations so that we can contrast

results with ecological data collected at short time

Table 4 Results for sensitivity to terrestrial and water gaps during competition, which was modeled as a binary variable

Filter A B C D E F G

Patterns CL Conn CL Group

CL PBG

HS Group CL Group

CL PBG

CL Conn

HS Group

CL Group

CL PBG

CL Conn

CL Dij CL Dij

CL A

Percentile 0.0037 0.0013 0.000015 0.021 0.0682 0.000015 0.00009

F Terrestrial 0 0 0.3 0 0 0.1 0.1

M Terrestrial 0 0.2 0.7 0 0.5 0.2 0.1

F Water 0.5 0.6 0.4 0.6 0.8 0.4 0.4

M Water 0.6 0.5 0.5 0.8 0.4 0.8 0.6

1 = presence of a gap prevents a competitor from winning a breeding vacancy; 0 = gaps do not affect competition. Results presented

as the average across the ten parameterizations (i.e., 0.5 = gap sensitivity turned off in half of accepted models)

F female, M male, CL Camp Lejeune, HS Holly Shelter, PBG number of potential breeding groups, Group group size, Conn

connectivity, Dij minimum pair wise genetic distance, A unique alleles per breeding group
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scales. Therefore, after 6 generations gene correlations

still reflect initial conditions. In contrast, under the

IAM locus the simulation begins without any gene

correlations. Assuming one-iteration, significant auto-

correlations were detected with locus 2 but these

reflect spurious correlations because it was not

observed at the higher iterations.

When we averaged the frequency of the most

common allele across five loci that sampled the same

initial allele distribution as locus 2 independently, we

find similar results to the one locus case. Therefore,

when iterating 200 or 10,000 times, adding 4 more loci

does little to increase power. However, compared to

the one drop case adding 4 loci did remove the

spurious correlation. We then evaluated whether

averaging across five loci with lower levels of allelic

richness assuming 10,000 iterations (i.e., loci 3–5,

each simulated independently five times) would help,

but found very similar results to locus 2. Therefore,

these results highlight that when simulating over

ecological time-scales (e.g., six generations) using one

IAM-locus is able to detect realistic spatial autocor-

relation but simulating 20 loci intended to emulate

microsatellite loci do not. All subsequent analysis is

only concerned with results from locus 1.

Correlations among -log[L]-values

We find strong relationships between estimates of

model fit -log[L]-values) for demographic and

genetic data on CL, and weaker relationships between

estimates of model fit for movement and genetic

indices (Fig. 2). This suggests both genetic indices are

more strongly associated with the process of genetic

drift than migration, because parameterizations able to

replicate demographic patterns were also successful at

replicating genetic patterns. The lower rank correla-

tions associated with patterns describing movement

suggests connectivity provides complementary infor-

mation relative to all other data sources at CL. It also

suggests that there is often movement that does not

lead to reproduction. We observed stronger relation-

ships between estimates of model fit for female

connectivity and genetic variation. Estimates of model

fit for female connectivity were more strongly asso-

ciated with patterns of allelic richness than genetic

divergence. In other words, parameters able to closely

approximate patterns of female connectivity were also

able to approximate patterns of allelic richness. This

suggests that allelic richness may be a stronger

indicator of female movement than genetic diver-

gence, which is perhaps not surprising because the

mating system is characterized by female biased-

dispersal that would result in new alleles being

introduced to the breeding group thanks to longer

distance female movement. At the regional level,

group size in 2009 at HS was moderately correlated

with data from CL, also indicating data

complementarity.

Correlations among parameters and estimates

of model fit

When all 600,000 parameterizations were evaluated

for females, the strongest correlation was observed

between floater foray distance and all summary

statistics except male connectivity (Fig. SM1; see

SM ODD for definitions of parameters). Therefore,

female floater forays contribute critically to approx-

imating abundance and the correct approximation of

C
L 

G
ro

up

C
L 

M
 C

on
n

C
L 

F
 C

on
n

C
L 

D
ij

C
L 

A

H
S

 G
ro

up

CL PBG

CL Group

CL M Conn

CL F Conn

CL Dij

CL A

0.89 0.46

0.55

0.7

0.64

0.28

0.91

0.92

0.51

0.66

0.92

0.93

0.51

0.75

0.98

0.65

0.72

0.76

0.59

0.7

0.71

Fig. 2 Correlation matrix (Spearman rank coefficients)

between -log[L]-values that describe the goodness of fit for

different summary statistics. Summary statistics available from

Camp Lejeune (CL) include demographic patterns (group:

breeding group size, and PBG: number of potential breeding

groups), movement patterns (M Conn: male connectivity, and F

Conn: female connectivity), and genetic patterns (Dij: average

minimum pair wise genetic distance, and A: number of alleles in

a breeding group). Data available from Holly Shelter (HS)

included only breeding group size
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movement patterns. For males, male helper foray

distance contributes more critically to approximating

abundance on CL, but male floater foray distance

contributes most critically to approximation of move-

ment patterns. In contrast, male floater foray distance

contributes more to approximating abundance on HS.

Strength of gap avoidance during floating behaviors

and gap sensitive competition were least important

parameters for approximating observed patterns for

both sexes.

When the best 200 parameterizations were selected

the correlation coefficients often decreased relative to

results from 600,000 parameterizations, because

parameters contributing to a steeper slope were

removed (i.e., the 200 best parameters tended to

provide a more similar fit to observed data). When

filter A was applied (i.e., only movement patterns on

CL), the relationships between parameters and move-

ments patterns was low, but the correlation among

parameters and demographic and genetic summary

statistics was higher. This indicates the 200 parameters

resulting from filter A are doing a better job of

approximating movement patterns but generating a

poor fit for demographic and genetic patterns. This

trend in which the application of summary statistics in

filters reduces the correlation between summary

statistics and parameters was observed across all

seven filters (Fig. SM1).

Hypothesis testing

Movement versus demographic data (H1)

By applying rejection filters at the 0.05 percentile, we

found that movement data were able to reduce

uncertainty 3-times more than demographic data (filter

A led to 1,861 and B to 5,995 parameterizations); thus,

we reject H1 (M vs. D; Table 3). When percentiles

were adjusted to select the 10 best parameterizations,

results indicated that movement and demographic data

collected at the same temporal- and spatial-scales

would often lead to different dispersal estimates

(Table 4; Fig. 3).

Under filter A, a considerable reduction in uncer-

tainty, as indicated by small error bars, was observed

for floater foray distance, dispersal speed, and terres-

trial gap sensitive competition for both sexes (Table 4;

Fig. 3). Therefore, a narrow range of values for these

parameters is required to replicate connectivity

patterns on CL. However, other parameters indicate

a broader range of accepted values, indicating that

either they are not critical for replicating movement

patterns at the scale of CL or interactions with other

parameters.

When demographic patterns were used to find the 10

best (filter B), uncertainty increased for dispersal speed

and male floater foray distance, but it decreased for

many parameters left uncertain by movement patterns,

indicating that different processes contribute to repli-

cating different patterns (Fig. SM1). For example,

female helper foray distance is effectively turned off by

filter B, but was left uncertain by filter A. Female

helpers only occur rarely in the field, but this result

indicates that allowing female helpers to compete for

breeding vacancies, as was observed under filter A,

increases error in the demographic trajectory. Indeed, a

positive correlation between female helper foray

distance and the summary statistic for the number of

Potential Breeding Groups (PBGs) was observed under

filter A (i.e., the longer the female helper dispersal

distance the greater the values for -log[L] for PBGs on

CL), however the relationship under filter B is weaker

(Fig. SM1). The IB-SEPM assumes that female helpers

have a higher survival rate than floaters, that compe-

tition favors older females, and middle-aged females

produce more offspring (SM ODD). This shift in

parameter values indicates that the processes associ-

ated with female helpers are likely still poorly under-

stood, because permitting some female helpers to

compete helps replicate movement patterns (filter A).

Similarly, strength of water gap avoidance for

females shifts toward zero under filter B. However,

under both filters A and C (i.e., only HS patterns) some

avoidance of water gaps is indicated. Therefore, to

replicate patterns of movement on CL and habitat

occupancy on HS a reduction in vagility due to water

helps (Fig. 1), otherwise too many birds from eastern

CL colonize western CL. The relationship between

strength of water gap avoidance for females and the

summary statistic for female connectivity under filter

B indicates increasing errors in the connectivity matrix

on CL (Fig. SM1) as strength of water gap avoidance

approaches zero.

Temporal and spatial scale of demographic data (H2)

We reject H2: D long versus D short because filter C

leads to accepting far more parameterizations (29,987)
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than filter B; therefore, the temporal- and spatial-scale

of demographic data can have drastic effects on

dispersal estimates. For example, female floater foray

distance decreases under filter C indicating more

restricted female forays help replicate patterns of

habitat occupancy on HS, but male foray distances

were similar to those observed under filter A (i.e.,

movement data only). Similarly, filter C indicates

terrestrial gap sensitive competition is selected more

often than observed in filters A and B, especially for

males. Therefore, dispersal behaviors may be affected

by local environmental differences not yet included in

the IB-SEPM.

Regional, short-term demographic data versus local

movement and demographic data (H3)

While 1-year of demographic data were useful on their

own, by including HS Group summary statistic with

movement and demographic summary statistics

collected at CL, we were able to reduce the number

of parameterizations from 119 to one using a rejection

filter with a 0.05 percentile (filter D vs. E). Thus

matching movement and demographic patterns simul-

taneously at regional scales was difficult. The inclu-

sion of demographic data collected at regional spatial

scales but over short time scales can improve dispersal

estimates, indicating the infeasibility of hypothesis H3

rD (Table 3). When the percentile of filter E was

adjusted to accept the 10 best parameterizations, we

observe increased uncertainty in female helper and

floater foray distance and male terrestrial gap sensitive

competition compared to filter D. Therefore, to

replicate patterns at regional scales a broader range

of values are required for some parameters. Female

dispersal speed, male floater foray distance, and

female gap sensitive competition display consistent

narrow ranges across filters A, C, D, and E; these

parameters are critical for replicating observed

patterns.

Fig. 3 Mean and 2 9 standard error for the ten-best parameterizations that result when different rejection filters (Table 2) were

applied. Five of the seven uncertain parameters are displayed, the other two are reported in Table 4. Gray males; yellow females
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Genetic distance versus demographic and movement

data (H4)

We found that substituting genetic distance patterns

(Dij; filter F), derived from a 24-year pedigree, for

movement and demographic data, using a 0.05

percentile led to a far greater number of accepted

parameterizations (30,005) compared to filter E, but

roughly the same number of parameterizations as

resulted from only one-year of demographic data

(29,987, filter C). Therefore, hypothesis H4 Dij versus

D,M cannot be rejected (Table 3). Parameter values

were similar under filter F or E when considering the

best ten parameters sets in most cases, but not all. The

biggest exception was dispersal speed for both sexes,

which suggests that Dij may not be sensitive enough to

detect dispersal distance when applied using inverse

modeling. Also certainty regarding water gap sensitive

competition for females decreased, indicating more

uncertainty regarding sensitivity of females to water

gaps. However, application of filter F moved median

female strength of water gap avoidance estimate close

to zero, but under filter E the median value remained

close to the median of the original range tested

(Fig. 3). This change in parameter values can best be

understood by realizing that under filter E we were

more certain that water prevented competition for

breeding vacancies (Table 4), but under filter F this

was found to be more uncertain. Therefore, there are

tradeoffs in parameter values for female strength of

water gap avoidance and water gap sensitive

competition.

Combing genetic distance and unique alleles (H5)

Application of allelic richness patterns (Ai) and Dij

(filter G) removed an additional 13,892 parameteriza-

tions compared to filter F when a rejection filter of 0.05

percentile was applied. Because application of filter G

further reduced number of parameterizations at the

0.05 percentile compared to filter F we reject H5 (Dij,

Ai vs. D,M). Therefore, in spite of the strong rank

correlation between Dij and Ai (Fig. 2), allelic rich-

ness still provided complementary information.

Examining the relationship between summary statis-

tics and parameter values for Dij and Ai when all

600,000 parameterizations are considered (Fig. SM1),

indicates that the source of this complementarity

derives from stronger associations between Ai and the

parameters female floater foray distance, dispersal

speed, and terrestrial gap sensitive competition, and

stronger associations between Dij and strength of

terrestrial gap avoidance for males. When filter G was

adjusted to find the ten best parameters, uncertainty in

parameter values decreased for female floater percep-

tual distance, dispersal speed, and strength of water

gap avoidance. Interestingly, even with the inclusion

of both genetic patterns uncertainty regarding male

dispersal speed did not decrease, which suggests

genetic summary statistics may not be sensitive

enough to detect rare longer distance movement of

the philopatric sex. Application of filter G moved

parameter estimates (Fig. 3) closer to those observed

under filter E for floater foray distance for both sexes,

male helper foray distance and female dispersal speed,

These results suggest that by applying both Dij and Ai

within rejection filters, we are able to select param-

eters able to replicate both patterns of genetic drift and

gene flow observed across CL and improve parameter

estimation.

Discussion

Inverse modeling techniques for IB-SEPMs based on

summary statistics provide a useful hypothesis testing

framework for including new processes and observed

patterns to learn how life history traits respond to

environmental heterogeneity. Three key components

allowed us to address hypotheses in a rigorous manner.

First, we initialized the model with as much observed

data as possible which made comparisons to field

observations possible (SM ODD). Second, stochastic

components of reproduction, survival, and movement

were allowed to interact. Third, information theoret-

ical approaches allowed us to contrast the contribution

different types of data make to revealing dispersal

processes.

Movement data were the most powerful on their

own, especially critical for estimating foray distance

and dispersal speed. Abundance data on their own

often led to likely erroneous parameter estimates, e.g.,

female helper foray distance and strength of water gap

avoidance. Therefore, forcing dispersal parameters to

only approximate abundance, without simultaneously

controlling for aspects of movement, can introduce

bias toward parameters that have stronger impacts on

population growth. Including demographic data, from
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both sites, and movement data did not always decrease

range of parameter values able to replicate data

collected in the field. On the contrary, we demon-

strated that under filter E uncertainty in parameter

values often increased. This result highlights that

dispersal is indeed a stochastic process and that

mechanistic dispersal models able to generate results

comparable to multiple types of empirical data are

critical for understanding the underlying uncertainty

associated with dispersal. Using genetic distance as a

summary statistic led to parameter values that were

similar to that observed under filter E, except for

dispersal speed for both sexes and strength of water

avoidance for females. Forcing parameterizations to

also approximate patterns of allelic richness corrected

the problem for female dispersal speed. Because Ai

was slightly more correlated with PBGs than Dij, these

results indicate that Ai and Dij provide complemen-

tary information useful for replicating patterns of

genetic drift and gene flow respectively.

We demonstrated that basic census data are a more

powerful predictor of dispersal than genetic data

derived from a six-generation pedigree. However, we

also found that when we adjusted rejection filters to

accept the ten best parameterizations that genetic data

can be very useful for estimating dispersal parameters

in lieu of movement and demographic data; as one

would expect based on population genetic theory.

Whether applying one IAM locus to a six-generation

pedigree provides a weaker or stronger signature of

genetic drift and gene flow than can be obtained by

microsatellite loci isolated from tissues collected in

the field is uncertain. One may argue that microsat-

ellite data capture a longer history of landscape

influences on dispersal. But separating recent from

historic influences of landscapes change using micro-

satellite data can be difficult (Balkenhol et al. 2009).

Also, the greater number of alleles included in the

IAM locus compared to even many microsatellite loci

may create stronger signatures of drift and gene flow.

Ultimately, we are unable to test this without tissue

samples from the field. Granted, had genetic data been

available at a bigger geographic extent, genetic data

may have been more powerful (Anderson et al. 2010).

We believe the application of our comparative statis-

tical framework is critical given the increasing use of

genetic data to infer dispersal (Sork and Waits 2010).

The value of landscape genetic analysis can only be

appreciated by contrasting the ability of genetic data to

estimate landscape processes compared to other data

types.

We used long-term movement, demographic, and

genetic data of the RCW together with a detailed IB-

SEPM to evaluate the ability of different data types to

determine parameters and processes of dispersal.

Though we only varied parameters related to move-

ment, we show they can have strong effects on

reproductive output, and therefore the model’s ability

to approximate demographic data. The ability of data

to reduce uncertainty in ecological processes is limited

by the capacity of the model to replicate the actual

ecological processes occurring in nature. If model

structure is poor representation of the actual process

then the model will be unable to replicate observed

data. Therefore, use of IB-SEPMs to estimate dispersal

parameters should also play careful consideration to

reproductive mechanisms. The comparative statistical

framework described here allowed us to assess both

parameter and structural uncertainty and will be used

to inform future data collection and model develop-

ment. The remaining uncertainty observed for many

parameters indicates that either important processes

still need to be included in the IB-SEPM or behaviors

are variable, a conclusion supported by recent empir-

ical data (Kesler et al. 2010).
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